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What are the properties of the fission fragments after scission ?
Mass yields Y(A), Total Kinetic Energy Y(TKE), spin distribution J
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D
The TD-GCM + GOA approach

@ Goal: Predict the evolution of the fissioning system from a
compound nucleus state.

@ Mean: Microscopic approach.

Scheme:
Effective nucleon-nucleon Set of collective variables ¢’
interaction (@) = [ £(d@.1) - 16(d)) - d7 (TD-GCm)
Y J
Y J

4 4

‘ Evolution equation ’ +

Yy

Results:
-Y(A)

initial state ¢j
(compound nucleus)

- Y(TKE)
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The TD-GCM + GOA approach

This framework yields the following time evolution equation:

Evolution equation

ad Rh? 0 @G 0
ih—g(d.t) = |-— S —BY 4+ V(3)| - g(d. ¢ 1
A diffusion-like equation for the collective variables § = g1, - , g

With:

@ An unknown function g(q,t), linked to the (g, t) coefficients of the
1(t) expression

@ An inertia tensor B1(g)

@ A potential energy surface V(§)
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U
Example of a n+23°Pu fission

@ Choice of the collective
variables:
o elongation(Qx),
e mass assymetry(Qso)
@ Calculation of the collective
inertia and potential (largest
computational budget)

Figure 1: Interpolated potential energy surface for
(n+%*Pu) fission
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o
Previous studies

Previous work using the TD-GCM approach for fission:
o J.F Berger et al., Comp. Phys. Comm. 63, 365 (1991)
e H. Goutte et al., Phys. Rev. C 71, 024316 (2005)
e W. Younes et al., LLNL-TR-586678 (2012)

Discretization of the collective variables based on:
@ a finite difference method,

@ a regular mesh.

— Only 2 collective variables

A

L

Can finite element analysis overcome this limitation ?
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o
Finite element VS Finite difference

Differential equation 1D:

ey,
Finite difference ax
o Generate a mesh with g(Xmin) = g(Xmax) =0

o Compute derivatives based on
the neighboor points

Jg, _ glxit1) —g(xi-1)

Ix " 2Ax

@ Deduce the linear system
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Finite element VS Finite difference

Finite element
@ Generate a mesh

@ Choose an interpolation inside
each element

— 8approx = Z Gi . wi

© Express the variational form

v¢:/x¢-[b(x)+(§ﬂ —0

@ Deduce a linear system
Vi € [0,dim] :

2
[ b0+ =] o

Differential equation 1D:

g
Tk — P

with g(Xmin) = g(Xmax) =0

g(x)
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T

Increasing accuracy with refinement

Two main refinement techniques:
@ h-refinement: decrease the maximum size (h) of the elements

@ p-refinement: increase the polynomial order (p) of the interpolation
function inside the elements

q(X)

p-refinement

X1 Xnew

Before p-refinement: gapprox = ax + b
After p-refinement: gapprox = ax> + bx + ¢

10 / 16
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————
Recent developements

December 2013:
@ Functional finite element method solver for N collective variables

@ Only using polynomial interpolation of degree 1
0

10 T T
New capabilities: 2 oo Harmonic oscillator 1D
. . 5 10 ooHarmonic oscillator 2D 4
@ Yield calculation =
o Initial wave packet 210% 3
calculation S
=10°F 3
o Generalization to any degree g
of polynomial interpolation © 10 E
(p-refinement enabled) 8
E 10°F 3
Tests on Toy-models: 15— ‘ ‘
1 2 3
@ Free wave packet Degree of the polynomial interpolation

@ Harmonic oscillator 1D, 2D
Figure 2: Relative error of the energy of the

second solution of an Harmonic Oscillator

September 10-12, 2014 D. Regnier - LLNL, Nuclear Theory and Modeling Group 12 /16



Context TD-GCM introduction Finite element analysis Status of our solver Conclusion

I
Preliminary results on a n+23°Pu fission

t=0.010722s

30

EJIUO %
017 1
. . ‘Sagy o
Figure 3: 2*Pu potential energy Yo g et
surface for the collective variable 300 —30
G20 and gzo
Figure 4: Propagation of the wave packet

(Ig(g20, g30, t)])
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D
Preliminary results on a n+23°Pu fission
Preliminary calculation:

@ Interpolation polynomials of

R Schillebeeckx (1992) degree 2
010 - ?1135(}313/(1-11335()2014) @ Smoothed yields
20.08_ | To be checked:
g5 @ Size of the simulation box
'Téo.oe- T @ Numerical accuracy
§0_04_ | To be further studied:
E @ Position of the frontier for

0.02 1 the yield calculation

@ Fragment masses at the

00835650 80 100110120 130140 150160170180 fronti
Mass rontier

o Additional collective

Figure 5: Primary mass yields for a n+2°Pu dimensions

fission
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I
Conclusion & Perspectives

@ Time Dependent Coordinate Generator Method (TD-GCM):
o Produces a Shrodinger like equation

@ Finite element method:
o Powerful refinement methods

@ Solver current status:

o Tested on toy-models
o Preliminary calculations on n +2°Pu

Perspectives
@ Optimizations — N-D calculations

@ Production of temperature dependent results (trends of the yields as
a function of the incident neutron energy)

@ Uncertainty analysis
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Thank you for your attention !
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